很多刚学elasticsearch的人对于查询方面很是苦恼,说实话es的查询语法真心不简单…  当然你如果入门之后,会发现elasticsearch的rest api设计是多么有意思。 

说正题,elasticsearch的查询有两部分组成:query and filter 。 

下面是官方的query vs  filter的介绍,其实说的也是不明不白的.

https://www.elastic.co/guide/en/elasticsearch/guide/current/_queries_and_filters.html

文章会后续更新,如果文章被转走了,请到原文地址瞅瞅: http://xiaorui.cc/?p=2317


Query查询器 与 Filter 过滤器

尽管我们之前已经涉及了查询DSL,然而实际上存在两种DSL:查询DSL(query DSL)和过滤DSL(filter DSL)。
过滤器(filter)通常用于过滤文档的范围,比如某个字段是否属于某个类型,或者是属于哪个时间区间
* 创建日期是否在2014-2015年间?
* status字段是否为success?

* lat_lon字段是否在某个坐标的10公里范围内?


查询器(query)的使用方法像极了filter,但query更倾向于更准确的查找。

* 与full text search的匹配度最高

* 正则匹配

* 包含run单词,如果包含这些单词:runs、running、jog、sprint,也被视为包含run单词
* 包含quick、brown、fox。这些词越接近,这份文档的相关性就越高
查询器会计算出每份文档对于某次查询有多相关(relevant),然后分配文档一个相关性分数:_score。而这个分数会被用来对匹配了的文档进行相关性排序。相关性概念十分适合全文搜索(full-text search),这个很难能给出完整、“正确”答案的领域。

query filter在性能上对比:filter是不计算相关性的,同时可以cache。因此,filter速度要快于query。

下面是使用query语句查询的结果,第一次查询用了300ms,第二次用了280ms.

下面是使用filter查询出来的结果,第一次查询时间是280ms,第二次130ms…. 速度确实快了不少,也证明filter走了cache缓存。 但是如果我们对比下命中的数目,query要比filter要多一点,换句话说,更加的精准。 


如果你想同时使用query和filter查询的话,需要使用 {query:{filtered:{}}} 来包含这两个查询语法。他们的好处是,借助于filter的速度可以快速过滤出文档,然后再由query根据条件来匹配。

我们这业务上关于elasticsearch的查询语法基本都是用query filtered方式进行的,我也推荐大家直接用这样的方法。should ,must_not, must 都是列表,列表里面可以写多个条件。 这里再啰嗦一句,如果你的查询是范围和类型比较粗大的,用filter ! 如果是那种精准的,就用query来查询。 

{

   ”bool”:{

     ”should”:[],   #相当于OR条件

     ”must_not”:[],  #必须匹配的条件,这里的条件都会被反义

     ”must”:[]        #必须要有的

  }

}



END..



对Python及运维开发感兴趣的朋友可以加QQ群 : 478476595 !!!

另外如果大家觉得文章对你有些作用!   帮忙点击广告. 一来能刺激我写博客的欲望,二来好维护云主机的费用.
如果想赏钱,可以用微信扫描下面的二维码. 另外再次标注博客原地址  xiaorui.cc  ……   感谢!

大数据ElasticSearch遇到ignore_above问题

    以前有一个叫朱伟大神的人跟我聊过,凡是所谓的坑,都是因为你没看他的源码或者文档导致的。 这话听起来有道理,但问题ElasticSearch的各种文...

阅读全文

[译文] Elasticsearch的任务管理api

心血来潮,又翻译了elasticsearch的一篇文章。 今才发现elasticsearch也有了任务管理api。这任务管理可以理解为mysql的show processlist; kill %task_id ...

阅读全文

使用elasticsearch的scroll和scan解决深度分页问题

使用ElasticSearch的scroll和scan解决大数据集合问题 内容概要, 主要是解决在ElasticSearch中大数据集合的查询需求,可以使用scroll scan可以较轻松的遍历el...

阅读全文

  1. 主要差异是在score的计算,如果你的场景只是日志检索,那么全部string字段设定为not_analysis用term filter就可以了。